
AD

TECHNICAL REPORT ARCCB-TR-95016

A MATHEMATICA FORMULATION OF
GEOMETRIC ALGEBRA IN 3-SPACE

L.V. MEISEL

MARCH 1995

US ARMY ARMAMENT RESEARCH,
DEVELOPMENT AND ENGINEERING CENTER

CLOSE COMBAT ARMAMENTS CENTER
BENET LABORATORIES

^WATERVLIET, N.Y. 12189-4050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

19950623 047
DTIS QUALITY INSPECTED S

DISCLAIMER

The findings in this report are not to be construed as an official

Department of the Army position unless so designated by other authorized

documents.

The use of trade name(s) and/or manufacture^ s) does not constitute

an official indorsement or approval.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD S200.22-M,

Industrial Security Manual, Section 11-19 or DoD 5200.1-R, Information

Security ProgTam Regulation, Chapter IX.

For unclassified, limited documents, destroy by any method that will

prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is

no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No 0704-0188

.H" ^»ni- m»,r,a%,n3 TheVata n M« ancI completing ano reviewing the collection of information Send comments regarding th.s burden estimate or »n>L°l^r »»^Ltei^n
9a nenrg anci mair,n,ng ihaata ne""; a"a

(£
m£**, 9 °hls 0ur0er. ?0 vVashmgton Headquarters Seme«. Directorate for information Operations and Reports,1215 ieflerson

D°:H°"-li^°"< * "? ?! 22°U2^302 and t9
0 the Off ice of Manaoemen, and Budget. Paperwork Reduction Project (0704-0188). Washmgton. DC 20503.

1. AGENO USE ONLY (Leave btan*) 2. REPORT DATE

March 1995

3. REPORT TYPE AND DATES COVERED

A MATHEMATICA FORMULATION OF
GEOMETRIC ALGEBRA IN 3-SPACE

5. FUNDING NUMBERS

AMCMS: 6111.02.H611.1

6. AUTHOR(S)

L.V. Meisel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Array ARDEC
Ben& Laboratories, AMSTA-AR-CCB-O
Watervliet, NY 12189-4050

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARCCB-TR-95016

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army ARDEC
Close Combat Armaments Center
Picatinny Arsenal, NJ 07806-5000

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Published in: American Journal of Physics

12a DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This report, in conjunction with its multivector analysis package, provides: (1) a brief introduction to the ideas and features of
the 8-dimensional geometric algebra G(3) defined on 3-space; (2) a code for performing geometric algebra analysis; (3) examples
of the operation of the code; and (4) applications of geometric algebra to the solution of multivector equations and to rotation
operations in 3-space.

14 'Mafliematica', Geometric Algebra, Multivector Algebra

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
36

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NS\
Stanaa'd ?0'n-, 298 (Rev 2-89;
Presents by ANS< Sta Z39-'Ss
298-102

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 THEORETICAL BACKGROUND

2.1 Dot and Wedge Products

2.2 Geometric Products of Multivectors With Scalars and

Pseudoscalars '

2.3 Products of Vectors With Vectors in G(3)

2.4 Products Involving Bivectors (Pseudovectors) in

G(3)

2.5 The Algebra of G(3)

3.0 EXAMPLES •

3.1 Dot, Cross, and Bivector Products • • •

3.2 Check on Associativity of Geometric Products . . .

3.3 Elementary Properties of Involuntary

Transformations of Products

3.4 Inverse of General Multivectors

4.0 APPLICATIONS

4.1 Solution of Multivector Equations

4.2 Rotation Operators in 3-Space

REFERENCES

APPENDIX: THE PACKAGE Accesion For
*—■ t

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D

Distribution /

Availability Codes

Avail and/or
Special

1

2

3

3

4

5

6

6

7

9

10

10

12

12

19

29

30

1.0 INTRODUCTION

David Hestenes (ref 1) presented a definitive formulation of

the geometric algebra G(3) for problems in 3-space R(3) with

applications to mechanics. Reference 1 also presents a

historical review of the development of a geometric algebra and

collects many previously published results (ref 2).

Baylis, Huschilt, and Wei (ref 3) presented a dissertation

on geometric algebra in 3-space without wedge products. They

accomplished this by using the dual relation between the wedge

product and the cross product of Gibbs vector analysis:

<a>A = i <a>X, t1)

where i is the unit pseudoscalar, the Gibbs cross product <a>X

is the Hodge dual of the wedge product <a>A, and we denote

vectors by angular brackets. Reference 3 also carried over the

Gibbs dot product, etc. Thus, Baylis, Huschilt, and Wei (ref 3)

were able to define geometric products of general elements,

multivectors, of G(3) by assuming the results of Gibbs vector

analysis, identifying bivectors (pseudovectors) with cross

products, and enumerating certain features of the pseudoscalar i.

The approach of Reference 3 obviates the need for

enumerating the properties of wedge products, which are simply

inherited from the properties of cross products, etc.

Furthermore, it turns out that all the properties of the

geometric product in G(3) may be expressed in a simple way in

terms of Gibbs dot and cross products. Of course, when one

builds the features of Gibbs vector analysis into the geometric

product, one cannot show (as is done in Reference 1) how

identities in Gibbs vector analysis follow from properties (e.g.,

associativity) of the geometric product.

In this report, the methods of Baylis, Huschilt, and Wei for

geometric algebra in R(3) are implemented. The report is

organized as follows: Section 2, Theoretical Background, reviews

the properties of sums and products of the elements of the 8-

dimensional algebra G(3). Section 3, Examples, demonstrates

standard features of geometric products and defines inverses for

general multivectors in G(3) using the package. Section 4,

Applications, demonstrates the utility of the geometric algebra

code for the solution of multivector equations and to rotation

operations in 3-space. The Appendix contains the MV package,

which defines data types "MV" for multivectors and "vec" for

vectors, and presents a code for (1) performing standard Gibbs

vector analysis; (2) the geometric product in G(3); and (3)

special coordinate specific (vectors in list form) calculations.

2.0 THEORETICAL BACKGROUND

A general element of a geometric algebra is referred to as a

multivector. A multivector m in G(3) is generally a sum of four

parts,

m=a0 + a + iA + iA0, (2)

where a0 and A0 are scalars, and a and A are vectors. The scalar

part of m (a0) is said to be of grade 0, the vector part of m (a)

of grade 1, the bivector part of m (i A) of grade 2, and the

pseudoscalar part of m (i A0) of grade 3. Terms of higher grade

vanish in G(3). The vector A is said to be the dual of the

bivector part (i A). The unit pseudoscalar i is of grade 3, it

commutes with all multivectors, its square is -1, and it has

geometrical content; it is not a complex number. Scalars and

vectors are defined over R(l) and R(3), respectively. Hestenes

refers to pure grade r multivectors as r-blades (e.g., pure

vectors are referred to as 1-blades).

As discussed in References 1 through 3, the r-blade parts of

multivectors have geometrical significance. One can associate

vectors (1-blades) with directed lines, bivectors (2-blades) with

oriented areas, and pseudoscalars (3-blades) with oriented

volumes.

2.1 Dot and Wedge Products

In this report, the wedge product of vectors is defined in

terms of the cross product through Eq. (1), and the dot product

is carried over directly from Gibbs vector analysis. In general,

for q>r, the dot product of a q-blade with an r-blade is the

grade (q-r)-part of the geometric product of the blades and the

wedge product is the grade (q+r)-part of the geometric product of

the blades. Although we include a discussion of wedge products

in this work, it is not incorporated into the package.

2.2 Geometric Products of Multivectors With Scalars and

Pseudoscalars

Scalars and pseudoscalars commute with all multivectors.

Pseudoscalar geometric products change grade and are analogous to

multiplication by imaginary numbers, and scalar geometric

products are analogous to multiplication by reals on C(l).

Geometric products with a pseudoscalar are always equal to dot

products, and the product of an r-blade with a pseudoscalar is a

grade (3-r) blade. Thus,

c m = m c, (3)

(c i) m = m (c i) = c m.i = c i.m, (4)

where m is an arbitrary multivector, c is an arbitrary scalar,

(c i) is an arbitrary pseudoscalar, and i is the unit

pseudoscalar.

2.3 Products of Vectors With Vectors in G(3)

The geometric product of vectors in G(3) is defined as

<a> = <a>. + i <a>X = (a,b) + i <a>X, (5)

where the grade 0 part of the product <a>. = (a,b) is the

Gibbs scalar (or dot) product of <a> and , and the grade 2

part of the product is i(<a>X) where <a>X is the Gibbs

vector (or cross) product of <a> and (a vector quantity).

Employing the properties of the dot and cross products we see

that

<a> = .<a> + i X<a> = (a,b) - i <a>X (5a)

which implies that

(a,b) = <a>. = (<a> + <a>)/2 (5b)

and i <a>X = <a>A = (<a> - <a>)/2. (5c)

From the properties of the Gibbs dot and cross, the scalar

<a><a> = (a,a) > 0, (5d)

if <a> is not a zero vector.

2.4 Products Involving Bivectors (Pseudovectors) in G(3)

As indicated in Eq. (2), a general bivector can be expressed

as (i A) where A is a vector (the Hodge dual of i A). Thus,

since i commutes with all multivectors, the properties of

geometric products of bivectors can be deduced from those of

products involving vectors.

2.4.1 Product of a Vector and a Bivector in G(3)

(i<A>) = i <A> = i (<A>. + i <A>X)

= i <A>. - <A>X = i (A,b) - <A>X. (6a)

We see that the geometric product of vectors with bivectors

yields the sum of a pseudoscalar and a vector part. Forming

(i<A>) and using the properties of Gibbs dot and cross

products as with Eq. (5), we can pick off the dot and wedge

products:

(i<A>). = -<A>X = ((i<A>) - (i<A>))/2 (6b)

and (i<A>)A = i(<A>.)= ((i<A>) + (i<A>))/2. (6c)

2.4.2 Product of Bivectors in G(3)

(i<A>)(i) = -<A> = -(<A>. + i<A>X) (7a)

We see that the geometric product of bivectors is equal to the

negative of the product of their dual vectors. We can pick off

the dot and wedge products:

(i<A>).(i) = -<A>.

= ((i<A>)(i) + (i)(i<A>))/2 (7b)

and (i<A>)A(i) = 0. (7c)

The bivector part (which is neither dot nor wedge) is seen to be

given by the commutator product of (i<A>) and (i). To every

plane, one can associate a "unit" bivector, which is a square

root of -1; its Hodge dual is a directed normal to the plane.

2.5 The Algebra of G(3)

Beyond the properties described above, the algebra has the

following features: addition of multivectors is commutative,

distributive, and associative. The geometric product of

multivectors is distributive and associative. There exist unique

multivectors 0 and 1, which serve as identity elements for

addition and geometric products, respectively, i.e.,

m + 0 = m and 1 m = m 1 = m (8)

for a general multivector m.

Every multivector m has a unique additive inverse, i.e.,

(-m):

m + (-m) = 0. (9)

As stressed in References 1 to 3 and in contrast to Gibbs dot and

cross products, all non-zero blades and most non-zero

multivectors have unique multiplicative inverses with respect to

the geometric product. (We illustrate this feature in Section

3.)

3.0 EXAMPLES

This section gives examples of applications of the geometric

algebra package to obtain standard results in G(3). Many of

these "results" have been built into the code; some are not so

obvious. The development of code for inverses might more

appropriately be considered part of Section 4, Applications; in

any case, the expressions for multivector inverses are essential

parts of the code and are incorporated into the implementation

package (Appendix).

3.1 Dot, Cross, and Bivector Products

3.1.0 Define some vectors and pseudovectors

In[72]:=

spa = MakeMV[0, a, 0, 0]; spb = MakeMV[0, b, 0, 0];

spB = MakeMV[0, 0, B, 0]; spA = MakeMV[0, 0, A, 0];

3.1.1 Dot- (wedge-) product is defined in terms of min (max)

grade terms in a GP:

3.1.1.0 For a vector <a> and grade r multivector Br:

<a>.Br = (<a>Br - (-l)r Br<a>)/2 and

<a>ABr = (<a>Br + (-l)r Br<a>)/2

The grade of <a>.Br is r-1; the grade of <a>ABr is r+1.

3.1.1.1 One could define commutator and anticommutator products

of arbitrary multivectors as:

ln[76]:=

com[a_, b_] := (GP[a, b] - GP[b, a])/2

ln[77]:=

anti[a_, b_] := (GP[a, b] + GP[b, a])/2

3.1.2 Vector-vector products:

3.1.2.1 Wedge product: The commutator of vectors yields a

pseudovector: com[<a>/] = <a>A = i <a>X.

In[78]:=

com[spa, spb]

Out[78]=

0+(0)+i(<a>X)+i(0)

3.1.2.2 Dot product: The anticommutator of vectors yields a

scalar: anti[<a>,] = <a>. = (a,b).

In[79]:=

anti[spa, spb]

Out[79]=

(afb)+(0)+i(0)+i(0)

3.1.3 Vector-pseudovector products:

3.1.3.1 Dot product: Commutator of vector and a pseudovector

yields a vector: com[<a>,i <A>] = i <a>A<A> = -<a>X<A>.

In[80]:=

com[spa, spA]

Out[80]=

0+(-<a>X<A>)+i(0)+i(0)

3.1.3.2 Cross (wedge) product: The anticommutator of a vector and

a pseudovector yields a pseudoscalar:

anti[<a>,i<A>] = i <a>.<A> = i (a,A).

In[81]:=

anti[spa, spA]

Out[81]=

0+(0)+i(0)+i((a,A))

3.1.4.1 The commutator product of pseudovectors yields a

pseudovector. It is neither a dot nor a cross product of

pseudovectors; its grade is 2. (The wedge product would be grade

4; thus, it is 0.) The commutator product of bivectors is given

by -1 times the cross (wedge) product of their dual vectors:

8

com[i<A>,i] = -com[<A>,] = -<A>A = -i <A>X.

In[82]:=

com[spA, spB]

Out[82]=

-(A,B)+(0)+i(-<A>X)+i(0)

3.1.4.2 Exercise: Multivectors of the form a0 + i<q>, where a0 is

a scalar and <q> is a vector, are called spinors. Show that

spinors form a 4-dimensional subalgebra of G(3).

3.2 Check on Associativity of Geometric Products

3.2.1 Define three arbitrary multivectors.

In[83]:=

spa = MakeMV[aO, a, A, AO]; spb = MakeMV[bO, b, B, BO];

spc = MakeMV[cO, c, C, CO];

3.2.2 To get an idea of what is involved in the geometric product

of three multivectors, let's exhibit the vector part of such a

product:

In[85]:=

vector[GP[spa, GP[spb, spc]]]

Out[85]=

bO cO <a> - BO CO <a> + (b,c) <a> - (B,C) <a> - BO cO <A> -

bO CO <A> - (b,C) <A> - (B,c) <A> + aO cO - AO CO -

(a,c) + (A,C) - AO cO - aO CO + (a,C) +

(A,c) + aO bO <c> - AO BO <c> + (a,b) <c> - (A,B) <c> -

AO bO <C> - aO BO <C> - (a,B) <C> - (A,b) <C> -

CO <a>X - cO <a>X - BO <a>X<c> - bO <a>X<C> -

cO <A>X + CO <A>X - bO <A>X<c> + BO <A>X<C> -

AO <fc»X<c> - aO <t»X<C> - aO X<c> + AO X<C>

3.2.3 A demonstration that GP[ml,GP[m2 ,m3]] -GP[GP[ml, m2],m3] =

0.

In[86]:=

Timing[GP[spa, GP[spb, spc]] - GP[GP[spa, spb], spc]]

Out[86]=

{62.56 Second, 0+(0)+i(0)+i(0)}

3.3 Elementary Properties of Involuntary Transformations of

Products

3.3.1 Exercise: For arbitrary multivectors a and b, show that

spatialReversal[a b] = spatialReversal[b] spatialReversal[a].

3.3.2 Exercise: For arbitrary multivectors a and b, show that

hermitean[a b] = hermitean[b] hermitean[a].

3.3.3 Exercise: For arbitrary multivectors a and b, show that

spatiallnversionfa b] = spatialInversion[a] spatialInversion[b].

3.4 Inverse of General Multivectors

3.4.1 Inverses of combinations of scalars and psuedoscalars:

As in the case of complex scalars, for i the unit pseudoscalar,

(aO + i cO)(aO - i cO) = aO2 + cO2 is a real non-negative scalar:

ln[87]:=

GP[MV[aO, 0, 0, cO], MV[a0, 0, 0, -cO]]

Out[87]=
2 2

aO + cO +(0)+i(0)+i(0)

Thus, unless a02+c02 = 0, the inverse of aO + i cO is given by:

ln[88]:=
inverse[MV[aO_, 0, 0, c0_]] :=

(l*MV[a0, 0, 0, -cO])/(aOA2 + c0^2)

10

In[89]:=
inverse[MV[aO_, 0, 0, 0]] := MakeMV[l/aO, 0, 0, 0]

In[90]:=
inverse[MV[0, 0, 0, cO_]] : = MakeMV[0, 0, 0, -cO^(-l)]

3.4.2 Inverses of general elements:

For an arbitrary multivector v,

GP[spatialReversal[v], v] = a "complex" scalar:

ln[91]:=
v = MakeMV[a0, a, A, A0];

ln[92]:=
GP[spatialReversal[v], v]

Out[92]=
2 2

aO - A0 - (a,a) + (A,A)+(0)+i(0)+i(2 (aO A0 - (a,A)))

Thus, unless the "complex" scalar,

GP[spatialReversal[v], v] vanishes, the inverse of an arbitrary

multivector v exists and is given by:

ln[93]:=

inverse[x_MV] := Module[{rx = spatialReversal[x]},

GP[inverse[Chop[GP[x,rx]]],rx]]]

(We include Chop to handle numerical cases.)

3.4.3 Example: Inverse of a spinor is a spinor:

In[94]:=

inversespa = inverse[spa = MakeMV[a0, 0, A, 0]]

Out[94]=
aO <A>
 +(0)+i(-())+i(0)

2 2
aO + (A,A) aO + (A,A)

In[95]:=

GP[inversespa, spa]

11

Out[95]=

l+(0)+i(0)+i(0)

ln[96]:=

GP[spa, inversespa]

Out[96]=

l+(0)+i(0)+i(0)

4.0 APPLICATIONS

This section shows how the implementation of the geometric

algebra of G(3) can be used to obtain the solution of multivector

equations and to develop an algebraic treatment (without

matrices) of rotations in R(3). The choice of applications is,

of course, arbitrary.

4.1 Solution of Multivector Equations

4.1.0.1 Hestenes suggests elegant techniques for solving

multivector equations, which involve replacing dot and wedge

(i.e., cross) products by appropriate combinations of geometric

products so as to convert to multivector equations to the form

ml <x> = m2 and then applying the inverse of ml.

4.1.0.2 Here we approach the same problems by a more "brute

force" technique, viz., (1) Get equation to be solved in

multivector form. (2) Step 1. Form geometric products with the

vectors and/or (duals to the) pseudovectors in the problem.

Solve the various grade terms for the dot and wedge (cross)

products to be eliminated. (We use the fact that if m=0, where m

is a multivector, then b m = 0, where b is an arbitrary

12

multivector.) (3) Step 2. Plug in the dot and wedge products and

solve for x.

4.1.1 Hestenes 2-1 Exercises (1.3)

Solve alpha <x> + <x>. <a> = <c> for <x>.

Get lhs of equation to be solved in multivector form. Use

MVscalar[vl,v2] to get dot product of vectors, etc. (The

anticommutator product would also yield the dot product of

vectors.)

In[97]:=

spx = MakeMV[0, x, 0, 0]; spa = MakeMV[0, a, 0, 0];

spb = MakeMV[0, b, 0, 0]; spc = MakeMV[0, c, 0,0];

ln[100]:=

lhs = alpha*spx + GP[spa, MVscalar[GP[spx, spb]]] - spc

Out[100]=

0+((b,x) <a> - <c> + alpha <x>)+i(0)+i(0) -

Step 1. Form geometric product with spb and solve for b.x.

In[101]:=

lhsTimesb = GP[lhs, spb]

Out[101]=

-(b,c) + alpha (b,x) + (a,b) (b,x)+(0)+

i((b,x) <a>X + X<c> - alpha X<x>)+i(0)

In[102]:=

bDotxEq=Solve[scalar[lhsTimesb]==0, dot[vec[b], vec[x]]]

Out[102]=
(b,c)

{{(b,x) -> }}
alpha + (a,b)

Step 2. Plug b.x into lhs and solve for <x>.

13

In[103]:=

soln = Solve[(vector[lhs] /. bDotxEq) == 0, vec[x]]

Out[103]=
(b,c) <a> - alpha <c> - (a,b) <c>

{{<x> -> -()}}
2

alpha + alpha (a,b)

Collect and Simplify the term proportional to vec[c].

In[104]:=
MapAt[Simplify[Collect[#l, vec[c]]] & , soln, {1, 1, 2}]

Out[104]=
(b,c) <a> <c>

{{<x> -> -() + }}
2 alpha

alpha + alpha (a,b)

4.1.2 Hestenes 2-1 Exercises (1.4)

Solve alpha <x> + <x>.(i) = <c> for <x>.

Get lhs of equation in multivector form. Use dual form for the

bivector, i.e., is a vector and i is the bivector.

(Remember that <x>.Bivector is the vector part of

GP[x,Bivector].)

ln[105]:=

spx = MakeMV[0, x, 0, 0]; spa = MakeMV[0, a, 0, 0];

In[107]:=

spB = MakeMV[0, 0, B, 0]; spc = MakeMV[0, c, 0, 0];

ln[109]:=

lhs = MVvector[alpha*spx + GP[spx, spB] - spc]

Out[109]=

0+(-<c> + alpha <x> + X<x>)+i(0)+i(0)

Step 1. Eliminate the BXx term. N.b., this entails eliminating

the B.x term that appears in GP with spB.

14

In[110]:=

lhsTimesB = GP[lhs, spB]

Out[110]=

0+((B,x) - (B,B) <x> - X<c> + alpha X<x>)+i(0)+

i(-(B,c) + alpha (B,x))

Use Thread and make the multivector head (i.e., MV) go to List:

ln[lll]:=

Thread[lhsTimesB == MV[0, 0, 0, 0], MV] /. MV -> List

Out[111]=

{True, (B,x) - (B,B) <x> - X<c> + alpha X<x> == 0,

True, -(B,c) + alpha (B,x) == 0}

Solve the equations for .<x> and X<x>:

ln[112]:=

eeqs = Solve[Thread[lhsTimesB == MV[0, 0, 0, 0], MV] /.

MV -> List,{dot[vec[B], vec[x]], vec[Cross[vec[B], vec[x]]]}]

Out[112]=
(B,c)

{{(B,x) -> , X<x> ->
alpha

(B,c) ~((B,B) <x>) - X<c>
_{ } }}

2 alpha
alpha

Step 2. Plug in X<x> and .<x> and solve for <x> = vec[x].

To get the bivector forms from the duals use:

<c>. = -<c>.i (i) = -<c>A(i)(i)

and X<c> = -i A<c> = -(i).<c>

ln[113]:=
soln = Solve[vector[lhs] == 0 /. eeqs[[l]], vec[x]]

15

Out[113]=
2

.

-((B ,c)) - c ilpha <c> + alpha X<c>
{{<x> > (

alpha
i •
+ alpha (B,B)

Invoke the function Simplify.

ln[114]:=
MapAt[Simplify , soln, {1, 1, 2}]

Out[114]=
0

{{<x>
(B,c) + alpha

3
alpha +

<c> - alpha X<c>
 }}

alpha (B,B)

4.1.3 Hestenes 2-6 Exercises (6 .5)

Describe the solution set of the simultaneous equations:

<x>A(i<A>) = da and <x>A(i) = db,

where (i<A>)(i)-(i)(i<A>) -(<A>-i<A>) = -<A>X<E l>

is not zero. (Actually Hestenes takes da = db = 0.)

Define the bivectors (pseudovectors) for the problem:

In[115]:=

spA = = MakeMV[0 , 0, A, 0]; spB = MakeMV[0, 0, B, 0];

Expand the solution to be found in a basis set. By assumption i

<A>X is not zero, thus, <A>, , <A>X span 3-space and any

<x> can be expanded in the form

ln[117]:=

xtest = MakeMV [0, alpha*vec[A] + beta*vec[B] +

gamma*'' /ec[Cross[vec[A], vec[B]]], 0, 0]

Out[117]=

0+(alpha <A> + beta + < gamma <A>X)+i(0)+i(0)

The solution must satisfy the wedge product constraints, and

16

since (vector)A(bivector) is a pseudoscalar, we can obtain the

values for alpha and beta via:

In[118]:=

constraints = MapAt[Simplify,

Solve[{pseudoS[GP[xtest, spA]] == da,

pseudoS[GP[xtest, spB]] == db}, {alpha, beta, gamma}],

{{1, 1, 2}, {1, 2, 2}}]

Out[118]=
-(db (A,B)) + da (B,B)

{{alpha -> /
2

-(A,B) + (A,A) (B,B)

db (A,A) - da (A,B)
beta -> }}

2
-(A,B) + (A,A) (B,B)

Note that the constraints put no limits on gamma. Thus, the

solution is the line determined in parametric form as a function

of gamma. I.e., any gamma will satisfy the constraints, and the

solution set corresponds with the straight line intersection of

the planes determined by <x>A(i<A>) = da and <x>A(i) = db.

(The Simplify[Collect[... code is arrived at by experience or in

the present case by trial and error.)

In[119]:=

solution = MapAt[Simplify[Collect[#l,

vec[Cross[vec[A], vec[B]]]]] & , xtest /. constraints, {1, 2}]

Out[119]=

(-(db (A,B)) + da (B,B)) <A>
{0+(+

2
-(A,B) + (A,A) (B,B)

17

(db (A,A) - da (A,B))
 + gamma <A>X)+i(0)+i(0)}

2
-(A,B) + (A,A) (B,B)

Separate the terms that are proportional to da, db, and gamma:

(The [[1]] gets the multivector out of the list.)

In[120]:=
soln = MapAt[MapAt[Together,

Collect[#l, {da, db, gamma}], {{1}, {2}}] & ,

solution, {1, 2}][[1]]

Out[120]=

db ((A,B) <A> - (A,A)) da ((B,B) <A> - (A,B))
0+(+ +

2 2
(A,B) - (A,A) (B,B) ~(A,B) + (A,A) (B,B)

gamma <A>X)+i(0)+i(0)

Check to see if constraints are satisfied:

In[121]:=

{pseudoS[GP[soln, spA]]==da, pseudoS[GP[soln, spB]]==db}

0ut[121]=

{True, True}

Check to see if constraints were satisfied in the earlier form:

In[122]:=

{pseudoS[GP[solution[[1]], spA]] == da,

pseudoS[GP[solution[[1]], spB]] == db}

Out[122]=

{True, True}

18

4.2 Rotation Operators in 3-Space

4.2.1 Reflection in the (i<a>)-plane.

Demonstrate that -<a><x> inverse[<a>] is <x> reflected in the

(i<a>)-plane.

In[123]:=

spa = MakeMV[0, a, 0, 0]; spx = MakeMV[0, x, 0, 0];

ln[124]:=

Apart /@ (-GP[spa, GP[spx, inverse[spa]]])

Out[124]=

-2 (a,x) <a>
0+(+ <x>)+i(0)+i(0)

(a,a)

In terms of unit normal <ahat> = <a>/a:

In[125]:=

Apart /@ (-GP[spa, GP[spx, inverse[spa]]]) /•

vec[a] ->a*vec[ahat] /. dot[vec[ahat], vec[ahat]] -> 1

Out[125]=

0+(-2 (ahat,x) <ahat> + <x>)+i(0)+i(0)

Since <x> = (<a>inverse[<a>])<x>

= <a>(inverse[<a>].<x> + inverse[<a>]A<x>)

= <a> <x>.inverse[<a>] -<a> <x>Ainverse[<a>],

consider -<a> <x>Ainverse[<a>]:

In[126]:=

Apart /@ (-GP[spa, MVpseudoV[GP[spx, inverse[spa]]]])

Out[126]=
(a,x) <a>

0+(-() + <x>)+i(0)+i(0)
(a,a)

One sees that -<a> <x>Ainverse[<a>] is the component of <x> in

19

the (i<a>)-plane, and that <a> <x>.inverse[<a>] is the component

of <x> along <a> (i.e., perpendicular to the (i<a>)-plane).

In[127]:=

Apart /@ (-GP[spa, GP[spa, MVpseudoV[GP[spx,

inverse[spa]]]]])

Out[127]=

0+(0)+i(<a>X<x>)+i(0)

4.2.2 Two reflections are equivalent to a rotation.

4.2.2.1 One can demonstrate that two reflections are equivalent

to a rotation by "back of the envelope" constructions. It may be

seen that the rotation is through an angle twice that between the

normals and about the line of intersection of the reflection

planes.

4.2.2.2 One can also use the package to demonstrate that two

reflections are equivalent to a rotation for specific cases.

Define a double reflection function:

In[128]:=

doubleR[a_, b_, spx_MV] :=

Module[{spa = MakeMV[0,a,0,0], spb = MakeMV[0,b,0,0], w},

CombineMVlist[

Apart /@ GP[GP[w = GP[spb, spa], spx], inverse[w]]]]

4.2.2.3 Example: Let a = {0,0,1} and b = {Sin[th/2],0,Cos[th/2]}

and operate on a general vector <{x,y,z}>. (We use Expand with

Trig->True to apply trigonometric identities.)

In[129]:=

spv = MakeMVfO, {x, y, z}, 0, 0];

20

In[130]:=

(ExpandAll[#l, Trig -> True] &) /§

doubleR[{0, 0, 1}, {Sin[th/2], 0, Cos[th/2]}, spv]

Out[130]=

0+(<{x Cos[th] + z Sin[th], y, z Cos[th] - x Sin[th]}>)+

i(0)+i(0)

4.2.3 The rotation operator is a spinor.

4.2.3.1 The doubleR function could be written in the form

<x> -> inverse[R] <x> R where R = <a>, a spinor,

for reflections in the (i<a>)-plane followed by a reflection in

the (i)-plane. The effect of R does not depend on the

magnitude of <a> and . Without loss of generality, we treat

the case that <a> and are unit vectors and thus,

inverse[R] = <a> = hermitean[<a>] = hermiteanfR]

and R = <a> = (a,b) + i <a>X

= Cosftheta] + (i<w>) Sin[theta],

where theta is the angle between the normal vectors, <a> and ,

and <w> is a unit vector in the direction of <a>X.

4.2.3.2 Euler form of the rotation operator. Write the spinor R

in the form, R = alpha + i<beta>. Then the Euler parameters,

alpha = (a,b) and <beta> = <a>X, define the rotation.

4.2.3.3 The Euler parameters are not independent, since

alpha2 + <beta><beta> = Cos[theta]2 +Sin[theta]2 = 1.

4.2.3.3.1 E.g., Reflections in planes having a = {0,0,1} and

b = {Sin[theta],0,Cos[theta]} yields Euler parameters

alpha = <a>. = Cos[theta] and

21

<beta> = <a>X = <{0,Sin[theta],0}>.

In[131]:=

ExpandAll[GP[MakeMV[0, {0, 0, 1}, 0, 0],

MakeMV[0, {Sin[th/2], 0, Cos[th/2]}, 0, 0]], Trig -> True]

Out[131]=
th th

Cos[—] + (0)+i(<{0, Sin[—], 0}>)+i(0)
2 2

4.2.4 Exponential form of the rotation operator: Exponential

function of bivector agument. The expression

R = Cos[theta] + (i<w>) Sin[theta],

suggests that one might express R in the form R = Exp[i<theta>]

with <theta> = theta <w>.

4.2.4.1 Multivector power series for Exp[i<a>]. Cos and Sin of

vector argument.

4.2.4.1.1 A function to compute integer powers of multivectors.

In[132]:=

GPpower[a_MV, 1] := a

ln[133]:=

GPpower[a_MV, 0] := MV[1, 0, 0, 0]

In[134]:=

GPpower[a_MV,(n_Integer)?Positive]:=GP[a,GPpower[a,n-l]]

4.2.4.1.2 First six terms in the power series for Exp[spa],

where spa = i<a> and let <a>.<a> -> a2 and <a>->a <ahat>.

In[135]:=

spa = MV[0, 0, vecfa], 0];

In[136]:=

(Collect[Expand[#l], vecfahat]] &) /@

22

(Sum[GPpower[MakeMV[0, 0, a, 0], i]/ü, {i, 0, 6}] /.

{dot[vec[a], vec[a]] -> a~2, vec[a] -> a*vec[ahat]})

Out[136]=
2 4 6 3 5

a a a a a
!___+___ +(0)+i((a - -- +) <ahat>)+i(0)

2 24 720 6 120

4.2.4.1.3 First six terms of the power series for Cos and Sin for

argument (la). ComplexExpand treats arguments not explicitly

complex as real, etc.)

In[137]:=

ComplexExpand[Normal[Exp[I*a] + 0[a]^7]]
Out[137]=

2 4 6 3 5
a a a a a

!_ — + — -—- + I (a - -- + --")
2 24 720 6 120

4.2.4.1.4 Thus, Exp[i<a>] may be identified with a multivector

having the form of a rotation operator:

Exp[i<a>] = Cos[a] + (i<a>/a) Sin[a].

4.2.5 Exercise. Show that the power series for Exp[<a>] may be

related to those for Sinh and Cosh.

Does Exp[i<a>] Exp[] = Exp[] Exp[i<a>]?

Does Exp[i<a>] Exp[i] = Exp[i] Exp[i<a>]?

(Forms for Exp[m], where m is a general multivector, are useful

in relativity theory (ref 3).)

4.2.6 Rotation operators in exponential form: Exponential

function for pseudoscalar argument.

In[138]:=

exp[MV[0, 0, b_, 0]] :=

Module[{bb = Sqrt[dot[b, b]], bbb, B = 0},

23

bbb = bb /. Sqrt[(wa_)~2] :> wa;

If[bbb != 0 !! !NumberQ[bbb], B += (b*Sin[bbb])/bbb];

MakeMV[Cos[bbb], 0, B, 0]]

In[139]:=

rotation[theta_] :=

exp[MakeMV[0, 0, theta/2, 0]] /.

dot[vec[a_], vec[a_]] :> a~2 /.

{Sqrt[(a_)~2] :> a, 1/Sqrt[(a_)~2] :> 1/a}

4.2.6.1 E.g., rotation operator for a rotation thru Abs[theta]

about the <theta> axis:

ln[140]:=

rotation[theta]

Out[140]=
theta

Sin[] <theta>
theta 2

Cos[] + (0)+i()+i(0)
2 theta

4.2.6.2 Rotation operator inverse check:

In[141]:=
rotation[th] - inverse[rotation[-th]] /.

dot[vec[a_], vec[a_]] :> a^2

Out[141]=

0+(0)+i(0)+i(0)

4.2.7 Identification of the Euler parameters {alpha,beta} of the

rotation thru theta:

In[142]:=
erules = Thread[{alpha, 0, beta, 0} -> rotation[theta]/.

MV ->
List]

24

OUt'1421= theta
Sin[] <theta>

theta 2
{alpha -> Cos[], 0 -> 0, beta -> / T * 2 theta

0 -> 0}

4.2.7.1 E.g., rotation of {x,y,z} through theta about {1,0,0}

axis, which is easily visualized, etc.

In[143]:=

Timing[Simplify /@ (Expand[vector[

GP[GP[ee = rotation[theta*{l,0,0}], MakeMV[0, {x, y, z}, 0, 0]],

inverse[ee]]], Trig -> True] /. vec[a_] :> a)]

Out[143]=

{8.02 Second, {x, y Cos[theta] + z Sin[theta],

z Cos[theta] - y Sin[theta]}}

4.2.7.2 E.g.,rotation of {x,y,z} through th about axis {1,1,0}

and turn it back. (To see the turned vector, remove the

semicolon.)

In[144]:=

rturned = MV[0, vec[(Collect[Simplify[#l],{x,y,z}]&) /@

(Expand[vector[

GP[GP[ee = rotation[(th*{l, 1, 0})/Sqrt[2]],

MakeMV[0,{x,y,z},0,0]], inverse[ee]]], Trig -> True] /.

vec[a_] :> a)], 0, 0];

Turn the rotated vector back:

In[145]:=

Timing[Simplify /@

(Expand[vector[GP[GP[inverse[ee],rturned], ee]], Trig -> True] /

25

vec[a_] :> a)]

Out[145]=

{95.9 Second, {x, y, z}}

4.2.8 Composition of rotations:

4.2.8.1 The Product of exponential forms: rotation(<thl>)

followed by rotation(<th2>).

To neaten up the notation, let dot[vec[a],vec[a]]->a2 and choose

the positive branch of the Sqrt[a2].

In[146]:=
rotProd = Apart /@

(GP[rotation[thl], rotation[th2]] /.

{dot[vec[a_], vec[a_]] :> a~2} //.

{Sqrt[(b_)~2] :> b, 1/Sqrt[(c_)A2] :> 1/c})

Out[146]=
thl th2

(thl,th2) Sin[] Sin[]
thl th2 2 2

Cos[—] Cos[—] +(0)+i(
2 2 thl th2

th2 thl thl th2
th2 Cos[-~] Sin[—] <thl> + thl Cos[—] Sin[—] <th2>

2 2 2 2

thl th2

thl th2
Sin[] Sin[] <thl>X<th2>

2 2
)+i(0) '

thl th2

4.2.8.2 The expression is familiar in terms of unit vectors.

I.e., Let <hati> = <thi>/Abs[thi]:

26

In[147]:=
rotProd2 = MapAt[Expand[#1] & , rotProd /

Out[147]=

{vec[thl] -> thl*vec[hatl],

vec[th2] -> vec[hat2]*th2}, {{1}, {3}}]

thl th2 thl th2
Cos[—] Cos[---] - (hatl,hat2) Sin[—] Sin[—] + (0)+i(

2 2 2 2

th2 thl thl th2
Cos[—] Sin[—] <hatl> + Cos[—] Sin[—] <hat2> -

2 2 2 2

thl th2
Sin[—] Sin[—] <hatl>X<hat2>)+i(0)

2 2

4.2.8.3 Special case. Rotations about the same axis:

ln[148]:= JO .
MapAt[Expand[#l, Trig -> True] & , rotProd2 /.

hat2 -> hatl /. dot[vec[a_]/ vec[a_]] :> a~2 /.

hatl-2 -> 1, {{1}, {3}}]

Out[148]=

thl th2 thl th2
Cos[— + —] + (0)+i(Sin[— + —] <hatl>)+i(0)

2 2 2 2

4.2.8.4 Special case. Rotation by Pi (reflection) about the x

axis followed by same about y axis:

In[149]:=

pi=N[Pi];r2=Chop[GP[rotation[pi*{l,0/0}],rotation[pi*{0,l#0}]]]

Out[150]=

0+(0)+i(-<{0, 0, l.}>)+i(0)

4.2.8.5 Special case. Rotation by Pi/2 about the x axis followed

by same about y axis. Use CombineMVlist to do vector sums, etc.

27

In[151]:=

CombineMVlist[GP[rotation[(pi*{l, 0, 0})/2]/

rotation[(pi*{0/ 1, 0})/2]]]

Out[151]=

0.5+(0)+i(<{0.5/ 0.5, -0.5}>)+i(0)

I.e., Pi/2 about y followed by Pi/2 about x yields Pi/3 = 60

degree rotation around {1,1,-1}.

4.2.9 The Product of Euler spinor forms. Euler spinor for

composition of rotations expressed as (geometric) product Euler

spinors. A derivation of Hestenes (ref 1), Eqns 3.28.

In[152]:=

Thread[MakeMV[alpha, 0, beta, 0] ==.

GP[MakeMV[alphal,0,betal,0],MakeMV[alpha2, 0, beta2, 0]], MV] /

MV -> List

Out[152]=

{alpha == alphal alpha2 - (betal,beta2), True,

<beta> == alpha2 <betal> + alphal <beta2> -

<betal>X<beta2>, True}

28

REFERENCES

1. D. Hestenes, New Foundations for Classical Mechanics,

Reidel, Dordrecht, 1987.

2. For example, D. Hestenes, "Real Spinor Fields," J. Math.

Phvs., Vol. 8, 1967, pp. 798-808; D. Hestenes, "Multivector

Calculus," J. Math. Anal, and APPI., Vol. 24, 1968, pp. 313-

325; D. Hestenes, "Multivector Functions," ,T. Math. Anal.

and APPI., Vol. 24, 1968, pp. 467-473; D. Hestenes,

"Vectors, Spinors, and Complex Numbers in Classical and

Quantum Physics," Am. J. Phvs., Vol. 39, 1971, p. 1013; and

D. Hestenes, "Observables, Operators, and Complex Numbers in

the Dirac Theory," J. Math. Phvs., Vol. 16, 1975, pp. 556-

572.

3. W.E. Baylis, J. Huschilt, and Jiansu Wei, "Why i?" Am. J.

Phvs., Vol. 60, 1992, pp. 788-797.

29

APPENDIX: THE PACKAGE

(* MV is a package for performing operations in the 8-dimensional
geometric algebra G(3).

Author: Lawrence V. Meisel
Version of November 1992. *)

BeginPackage["LM*MV'"]

(* usage statements for the exported functions. *)
MakeMV::usage =
"MakeMV[p0,p,q,q0] constructs a representation, \n

MV[p0,vec[p],vec[q],q0], of\n
pO + <p> + i<q> + i qO. \n

The package recognizes that \n
i. objects with the head MV are multivectors\n
ii. objects with head vec are vectors. \n

\n
See GP for forming geometric products of multivectors. \n
See scalar, vector, pseudoV, and pseudoS for\n

selecting parts of multivectors. \n
See MVscalar, MVvector, MVpseudoV, and MVpseudoS for \n

creating MV with the selected multivector parts, \n
E.g. MVvector[MV[aO,a,b,bO]]->MV[0,a,0,0]."

GP::usage =
"GP[mvl,mv2] computes the geometric product of the\n
multivectors mvl and mv2, which must have head MV. \n
Linear combinations use standard +, etc. \n
E.g. GP[MakeMV[pO,0,q,0],mvl] + 3 GP[mv2,mv3] yields \n

the multivector: (pO + i<q>) mvl +3 mv2 mv3. \n
See also MakeMV."

listCombineMV::usage =
"listCombineMV[mv] simplifies MV's having List-form vectors and
pseudovectors."

Cross::usage = "In G(3): a b = dot(a,b) + a/\\b \n
\t\t\t dot(a,b) + i Cross[a,b]."

dot::usage = "In G(3): a b = dot(a,b) + i Cross[a,b]."

vec::usage = "vec[a] means that a is of type vec, i.e., vector."

MV::usage = "MV[mv] means that mv is of type MV, \n
\t \t \t i.e., a multivector."

scalar::usage =
"scalar[MV[a, b, c, d]] returns a, the scalar part\n

of its multivector argument.\n

30

See also MakeMV and MVscalar"

vector::usage =
"vector[MV[a, b, c, d]] returns b, the vector part \n

of its multivector argument. \n

See also MakeMV and MVvector."

pseudoV::usage =
"pseudoV[MV[a, b, c, d]] returns c, the vector dual\n
to the pseudovector part of its multivector argument.\n

See also MakeMV and MVpseudoV."

pseudoS::usage =
"pseudoS[MV[a, b, c, d]] returns d, the pseudoscalar\n

part of its multivector argument.\n

See also MakeMV and MVpseudoS"

MVscalar::usage =
"MVscalar[MV[a, b, c, d]] returns MV[a,0,0,0] the pure\n
scalar part of its multivector argument.\n

See also MakeMV and scalar"

MVvector::usage =
"MVvector[MV[a, b, c, d]] returns MV[0,b,0,0] the pure
vector part of its multivector argument. \n

See also MakeMV and vector."

MVpseudoV::usage =
"MVpseudoV[MV[a, b, c, d]] returns MV[0,0,c,0], the \n
the pure pseudovector part of its multivector argument.\n

See also MakeMV and pseudoV."

MVpseudoS::usage =
"MVpseudoS[MV[a, b, c, d]] returns d, the pure\n
pseudoscalar part of its multivector argument.\n

See also MakeMV and pseudoS."

hermitean::usage =
"hermitean[MV[aO,a,b,bO]] --> MV[aO, a, -b, -b0], \n

i.e., hermitean[aO + <a> + i + i b0] ->\n
aO + <a> - i - i bO. \n

See also spatialReversal, spatiallnversion, and MakeMV."

spatialReversal::usage =

31

"spatialReversal[MV[aO,a,b,bO]] --> MV[aO, -a, -b, bO], \n
i.e., hermitean[aO + <a> + i + i bO] -> \n

aO - <a> - i + i bO. \n

See also hermitean, spatiallnversion, and MakeMV."

spatiallnversion::usage =
"spatialInversion[MV[aO,a,b,bO]] --> MV[aO, -a, b, -bO], \n

i.e., hermitean[aO + <a> + i + i bO] -> \n
aO - <a> + i - i bO. \n

See also hermitean, spatialReversal, and MakeMV."

inverse::usage = "inverse[mv] returns the GP inverse of mv."

rotation::usage = "rotation[<theta>] -> rotation mv w.r.t.
theta."

exp::usage = . . „
"exp[aO,a,A,AO]=exp[MakeMV[aO,a,A,AO]]=mv exponential function.

Begin["'Private'"]

MakeMV[pO_,p_,q_,qO_]:=MV[pO,vec[p],vec[q],qO]

(* Define the data type vec for vectors and the duals of
bivectors.
*)
vec[k_?NumberQ l_]:=k vec[l]
vec[vec[a_]]:=vec[a]
vec[a_+b_]:=vec[a]+vec[b]
vec[a__vec c_]:=a c
vec[-a_]:=-vec[a]
vec/:vec[x_Cross y_]:=y vec[x]
vec[0]=0;
dot[a_,0]:=0;Cross[a_,0]:=0;dot[0,a_]:=0;Cross[0,a_]:=0;

(* Properties of Gibbs cross products: *)
Cross/:Cross[a_vec,vec[Cross[b_vec,c_vec]]]:=

b dot[a,c]-c dot[a,b]
Cross/:Cross[vec[Cross[a_vec,b_vec],c_vec]]:=

b dot[a,c]-a dot[c,b]
Cross/:Cross[a_vec,Cross[b_vec,c_vec]]:=

b dot[a,c]-c dot[a,b]
Cross/:Cross[Cross[a_vec,b_vec],c_vec]:=

b dot[a,c]-a dot[c,b]
Cross/:Cross[a_vec,b_vec]:=-Cross[b,a]/;!OrderedQ[{a,b}]
Cross/:Cross[a_+w_,b_]:=Cross[a,b]+Cross[w,b]
Cross/:Cross[a_,b_+w_]:=Cross[a,b]+Cross[a,w]
Cross/:Cross[-a_,b_]:=-Cross[a,b]
Cross/:Cross[a_,-b_]:=-Cross[a,b]
Cross/:Cross[a_,a_]:=0

32

Cross/:Cross[w_ a_vec,b_]:=Cross[a,b]w
Cross/:Cross[a_,w_ b_vec]:=Cross[a,b]w

(* Properties of Gibbs dot product and combinations
of dot and cross. *)

dot/:dot[a_vec,b_vec]:=dot[b,a]/;!OrderedQ[{a,b}]
dot/:dot[a_vec w_,b_]:=w dot[b,a]
dot/:dot[a_,b_vec w_]:=w dot[b,a]
dot/:dot[a_,b_+w_] := dot[b,a]+dot[a,w]
dot/:dot[a_+w_,b_]:=dot[b,a]+dot[b,w]
dot/:dot[-a_,b_]:=-dot[b,a]
dot/:dot[a_,-b_]:=-dot[b,a]
dot/:dot[a_vec,vec[Cross[b_vec,c_vec]]]:=

Module[{u,v,w},{u,v/w}=Sort[{a,b,c}];
Signature[{a,b,c}] dot[u,vec[Cross[v,w]]]]/;

!OrderedQ[{a/b/c}]
dot/:dot[vec[Cross[b_vec,c_vec]],a_vec]:=

dot[b,vec[Cross[c,a]]]
dot[vec[Cross[a_vec,b_vec]],vec[Cross[A_vec,B_vec]]]:

dot[a,A]dot[b,B]-dot[a,B]dot[A/b]
dot[a_vec,vec[Cros s[b_vec,a_vec j]]:=0
dot[a_vec,vec[Cross[a_vec,b_vec]]]:=0

(* Define a function to apply to simplify all MV
combinations. The present simplification choice
allows one to simplify expressions involving
Cos[x]~2+Sin[x]~2. Note that this could be
accomplished by setting Trig->True in ExpandAll, but
that entails other transformations, which might be
undesirable. *)
regg[a_]:=Map[Factor[ExpandAll[#/.

Cos[x_]~2:>(l-Sin[x]~2)]]&fa]

(* Linear Combinations of MV's: *)
MV/:MV[a_,b_,c_,d_]+MV[A_,B_,C_,D_] :=

MV[a+A,b+B,c+C,d+D]//regg;
MV/:MV[a_/b_,c_/d_]-MV[A_/B_/C_,D_] :=

MV[a-A,b-B,c-C,d-D]//regg;
MV/:w_*MV[a_,b_,c_,d_]:=MV[w a,w b,w c,w d]//regg;

(* Derivatives of MV's: *)
MV/:D[MV[a_,b_/c_,d_],1_]:=

MV[D[a,l],D[b,l],D[c,l],D[d,l]];
vec/:D[vec[a_],l_]:=vec[D[a,l]];

(* Geometric products. *)
GP[MV[a_,0,0,0],MV[A_,B_,Q_,Q0_]]:=

MV[a A,a B,a Q,a Q0]//regg;
GP[MV[0,0,0,a_]/MV[A_,B_,Q_/Q0_]]:=

MV[-a Q0,-a Q,a B,a A]//regg;
GP[MV[0,b_,0/0],MV[A_,B_/Q_/Q0_]]:=

MV[dot[b,B],A b-vec[Cross[b,Q]],

33

QO b+vec[Cross[b,B]] ,dot[b,Q]]//regg;
GP[MV[0/0/b_/0],MV[A_,B_,Q_,QO_]]:=

GP[MV[0,0/0,l],GP[MV[0,b,0,0],MV[A/B,Q,QO]]]//regg;
GP[MV[a_,b_,c_,d_],MV[A_,B_,Q_,QO_]]:=

(GP[MV[a,0,0,0],MV[A,B,Q,QO]]+
GP[MV[0,b,0,0],MV[A,B,Q,QO]]+
GP[MV[0,0,c/0],MV[A,B,Q/QO]]+
GP[MV[0,0,0,d],MV[A,B,Q,QO]])//regg;

(* functions for selecting the parts of multivectors. *)
scalar[MV[a_,b_,c_/d_]]:=a
vector[MV[a_,b_,c_,d_]]:=b
pseudoV[MV[a_,b_,c_,d_]]:=c
pseudoS[MV[a_,b_,c_,d_]]:=d

(* functions for selecting pure multivector parts of
general multivectors. *)
MVscalar[MV[a_,b_,c_,d_J] :=MakeMV[a,0,0,0]
MVvector[MV[a_/b_,c_/d_]]:=MakeMV[0,b,0,0]
MVpseudoV[MV[a_,b_,c_,d_]]:=MakeMV[0,0,c,0]
MVpseudoS[MV[a_,b_,c_,d_]]:=MakeMV[0,0,0,d]

(* Involuntary transformations. *)■
hermitean[MV[aO_,a_,b_,bO_]]:=MV[aO,a,-b,-b0]
spatialReversal[MV[aO_,a_,b_,bO_]]:=MV[aO,-a,-b,b0]
spatialInversion[MV[aO_/a_/b_,bO_]] :=MV[a0,-a,b,-b0]

(♦Special code for processing list form vectors and
pseudovectors. *)
Cross[vec[a_List],vec[b_List]]:=CROSS[a,b]
Cross[a_List,b_List]:=CROSS[a,b]
CROSS[{a_/b_,c_},{A_,B_,C_}]:={b C-c B,c A-a C,a B-b A}
dot[vec[a_List],vec[b_List]]:=a.b
dot[l_List,m_List]:=1.m
vec[k__ l_List]:=k vec[l]
vec[{0,0/0}]=0;
listCombineMV=MakeMV[Expand[scalar[#]],

Expand[vector[#]/.vec[a_j:>a],
Expand[pseudoV[#]/.vec[a_]:>a],
Expand[pseudoS[#]]]&;

(* formatting scheme for multivectors: *)
Format[vec[a_]]:=SeguenceForm["<",a,">"]
Format[dot[vec[a_J ,vec[b_]]]; =

SequenceForm["(",a,",",b,")"]
Format[Cross[a_vec,b_vec]]:=SequenceForm[a,"X",b]
Format[vec[Cross[a_vec,b_vec]]]:=

SequenceForm[a,"X",b]
Format[MV[aO_,a_/b_,bO_]]:=

SequenceForm[aO,"+(",a,")+i(",b,")+i(",b0,")"]

(* Inverses. *)

34

inverse[MV[a0_,0,0,c0_]]:=l/(a0-2+c0~2)MV[a0,0,0,-c0]
(* inverse[MV[aO_,0,0,0]]:=MakeMV[l/aO,0,0,0]
inverse[MV[0,0,0,cO_]]:=MakeMV[0,0,0,-1/cO] *)
inverse[x_MV]:=Module[{rx=spatialReversal[x]},

(* Include Chop to eliminate vestigial non-zero
vector and bivector parts in numerical cases.*)

GP[inverse[Chop[GP[x,rx]]],rx]]

(* Exponential functions and the rotation operator in R(3). *)
exp[aO_,a_,b_,bO_]:=exp[MV[aO,vec[a],vec[b],bO]]

exp[MV[aO ,0,0,b0_]]:= ,,_«,,,
GP[MV[Exp[a0],0,0,0],MV[Cos[b0],0,0,Sin[b0]]]

exp[MV[0,b_/0,0]]:=
Module[{bb=Sqrt[dot[b, b]],bbb,B= 0},

bbb=bb/.dot[vec[aa_],vec[aa_]]:>aa^2
/.Sqrt[wa_^2]:>wa;

If[bbb !=0l j!NumberQ[bbb],B+=b Sinh[bbb]/bbb];
MakeMV[Cosh[bbb],8,0,0]]

exp[MV[0,0,b_,0]]:=
Module[{bb=Sqrt[dot[b,b]],bbb,B=0} ,

bbb=bb/ . dot [vec [aa_], vec [aa_]] : >aa/S2
/.Sqrt[wa_^2]:>wa;

If[bbb !=0!!!NumberQ[bbb],B+=b Sin[bbb]/bbb];
MakeMV[Cos[bbb],0,B,0]]

rotation[theta_]:=exp[MakeMV[0,0,theta/2,0]]/.
dot[vec[a_],vec[a_]]:>a^2 /.
{Sqrt[a_^2]:>a,l/Sqrt[a_^2]:>l/a}

exp[MV[a0 ,a ,b_,b0_]]:= . r.nl11 GP[GP[GP[MV[Exp[a0],0,0,0],MV[Cos[b0],0,0,Sin[b0]]],
exp[MV[0,a,0,0]]],exp[MV[0,0,b,0]]]

End[] (* end private context *)

EndPackage[] (* end package context *)
/

35

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

CHIEF, DEVELOPMENT ENGINEERING DIVISION
ATTN: AMSTA-AR-CCB-DA

-DB
-DC
-DD
-DE

CHIEF, ENGINEERING DIVISION
ATTN: AMSTA-AR-CCB-E

-EA
-EB
-EC

NO. OF
COPIES

CHIEF, TECHNOLOGY DIVISION
ATTN: AMSTA-AR-CCB-T

-TA
-TB
-TC

TECHNICAL LIBRARY
ATTN: AMSTA-AR-CCB-O

TECHNICAL PUBLICATIONS & EDITING SECTION
ATTN: AMSTA-AR-CCB-O

OPERATIONS DIRECTORATE
ATTN: SMCWV-ODP-P

DIRECTOR, PROCUREMENT & CONTRACTING DIRECTORATE
ATTN: SMCWV-PP

DIRECTOR, PRODUCT ASSURANCE & TEST DIRECTORATE
ATTN: SMCWV-QA

2
1
1
1

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: AMSTA-AR-CCB-O OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. OF
COPIES

NO. OF
COPIES

ASST SEC OF THE ARMY
RESEARCH AND DEVELOPMENT
ATTN: DEPT FOR SCI AND TECH 1
THE PENTAGON
WASHINGTON, D.C. 20310-0103

ADMINISTRATOR
DEFENSE TECHNICAL INFO CENTER 2
ATTN: DTIC-OCP (ACQUISITION GROUP)
BLDG. 5, CAMERON STATION
ALEXANDRIA, VA 22304-6145

COMMANDER
U.S. ARMY ARDEC
ATTN: SMCAR-AEE 1

SMCAR-AES, BLDG. 321 1
SMCAR-AET-O, BLDG. 35 IN 1
SMCAR-FSA 1
SMCAR-FSM-E 1
SMCAR-FSS-D, BLDG. 94 1
SMCAR-IMI-I, (STINFO) BLDG. 59 2

PICATINNY ARSENAL, NJ 07806-5000

DIRECTOR
U.S. ARMY RESEARCH LABORATORY
ATTN: AMSRL-DD-T, BLDG. 305 1
ABERDEEN PROVING GROUND, MD

21005-5066

DIRECTOR
U.S. ARMY RESEARCH LABORATORY
ATTN: AMSRL-WT-PD (DR. B. BURNS) 1
ABERDEEN PROVING GROUND, MD

21005-5066

DIRECTOR
U.S. MATERIEL SYSTEMS ANALYSIS ACTV
ATTN: AMXSY-MP 1
ABERDEEN PROVING GROUND, MD

21005-5071

COMMANDER
ROCK ISLAND ARSENAL
ATTN: SMCRI-ENM 1
ROCK ISLAND, IL 61299-5000

MIAC/CINDAS
PURDUE UNIVERSITY
P.O. BOX 2634 1
WEST LAFAYETTE, IN 47906

COMMANDER
U.S. ARMY TANK-AUTMV R&D COMMAND
ATTN: AMSTA-DDL (TECH LIBRARY) 1
WARREN, MI 48397-5000

COMMANDER
U.S. MILITARY ACADEMY
ATTN: DEPARTMENT OF MECHANICS 1
WEST POINT, NY 10966-1792

U.S. ARMY MISSILE COMMAND
REDSTONE SCIENTIFIC INFO CENTER 2
ATTN: DOCUMENTS SECTION, BLDG. 4484
REDSTONE ARSENAL, AL 35898-5241

COMMANDER
U.S. ARMY FOREIGN SCI & TECH CENTER
ATTN: DRXST-SD 1
220 7TH STREET, N.E.
CHARLOTTESVILLE, VA 22901

COMMANDER
U.S. ARMY LABCOM
MATERIALS TECHNOLOGY LABORATORY
ATTN: SLCMT-IML (TECH LIBRARY) 2
WATERTOWN, MA 02172-0001

COMMANDER
U.S. ARMY LABCOM, ISA
ATTN: SLCIS-IM-TL 1
2800 POWER MILL ROAD
ADELPHI, MD 20783-1145

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER,
BENET LABORATORIES. CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND,
AMSTA-AR-CCB-O, WATERVLIET NY 12189-4050 OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONTD)

NO. OF NO. OF
COPIES COPIES

COMMANDER WRIGHT LABORATORY
U.S. ARMY RESEARCH OFFICE ARMAMENT DIRECTORATE
ATTN: CHIEF, IPO 1 ATTN: WL/MNM -1
P.O. BOX 12211 EGLIN AFB, FL 32542-6810
RESEARCH TRIANGLE PARK, NC 27709-2211

WRIGHT LABORATORY
DIRECTOR ARMAMENT DIRECTORATE
U.S. NAVAL RESEARCH LABORATORY ATTN: WL/MNMF 1
ATTN: MATERIALS SCI & TECH DIV 1 EGLIN AFB, FL 32542-6810

CODE 26-27 (DOC LIBRARY) 1
WASHINGTON, D.C. 20375

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER,
BENET LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND,
AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

